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Abstract—In the transition to sustainable energy, it
is important to adapt consumption to the fluc- tuating
availability of power generated by renewable sources.
Because a significant portion of the energy for private
citizens is used in their own homes this thesis tries to
tackle energy usage in residential buildings. Through the
use of intelligent control, it is theorized that a reduction
in consumption in residential buildings with infrared
panel heating is possible without sacrificing comfort and
at the same time optimize for the power generated by
a photovoltaic system. The idea is to utilize the fast
reaction time of infrared heaters to only heat rooms if a
person is detected. To achieve this, a system to analyze
the usage behavior in a household is devised. It consists
of commercially available smart home sensors using the
Home Assistant software and accompanying Python API
to track data such as temperature, power generation,
and if a person is detected. Then an artificial neural
network is trained using the fast.ai framework with
a combined generated and real dataset. The resulting
model shows promise in both predictive control and
efficiency gains.

Index Terms—machine learning, fast.ai, energy usage
management, home control sys- tems, smart home,
Home Assistant, photovoltaic energy management

A. Fritzsche is a Master student in Mechachatronics
& Smart Technologies, MCI, Innsbruck, Austria, e-mail:
a.fritzsche@mci4me.at

I. INTRODUCTION

TO counteract climate change, a shift to sustain-
able energy management is essential. This tran-

sition requires adjusting energy consumption to the
fluctuating availability of renewable sources, which
now form a growing part of the electricity mix. Pho-
tovoltaic (PV) systems are increasingly affordable (a
few cents per watt [1]), making them an attractive in-
house power source, though their intermittent avail-
ability limits practicality. Infrared panel heaters are
a cost-effective alternative to heat pumps and gas
boilers, though less efficient, converting electricity
to heat at a 1:1 ratio, compared to heat pumps’
1:6. To address these challenges, a concept for PV-
equipped homes with infrared heating is proposed.
Intelligent control can reduce electricity consumption
and optimize solar power self-consumption without
sacrificing comfort. Infrared heaters’ quick response
allows rooms to be heated based on detected pres-
ence, utilizing smart home technology for control.

Research on residential energy management high-
lights machine learning (ML) as the most effective
method for handling the system’s complexity [2].
ML also aids in designing energy-efficient buildings,
predicting heating and cooling demands with over
95 % accuracy [3]. Additionally, ML balances grid
loads [4] and optimizes electric vehicle charging with



[5] and without [6] PV systems using reinforcement
learning. Since 50 % of building energy [7], [8]
is used for HVAC, an experiment compared ML-
based HVAC control with PID controllers, reducing
energy use by 36 % and improving comfort [7].
Another approach uses hot water and room tem-
peratures as energy storage, balancing PV power
peaks and achieving slight grid-draw reductions [9].
A third experiment optimized HVAC energy use via
Q-learning, reducing energy consumption by 15 %
and costs by 17 % [8]. The model adapted well to
different comfort zones and seasons. Another study
used deep Q-learning for a virtual home with PV and
electric vehicles, achieving significant cost savings
[10]. Lastly, a big-data approach used IoT sensors
to identify energy consumption patterns, applying a
J48 decision tree algorithm to suggest optimizations,
demonstrating further potential for energy savings
[11].

For this paper a Smart Home based on the Home
Assistant software [12] is chosen as the basis of
implementing a conventional and a machine learn-
ing controller. For the latter an supervised learning
approach for a random forest and an artificial neural
network model is chosen.

II. METHODS

As mentioned previously, the Smart Home system
uses Home Assistant software running on a Home
Assistant Green device, which is powered by an
ARM-based Rockchip SoC from Nabu Casa Inc.
The system is always updated to the latest stable
version. The controller connects to the home network
via Ethernet, with a fixed IP address assigned by
the router. The interface can be accessed through a
mobile app or web browser locally (https://IP:8123)
or via Nabu Casa’s cloud service.

Device configuration is managed through integra-
tions, which can be installed directly or via the Home
Assistant Community Store (HACS). Additional soft-
ware, called Add-ons, extends functionality. For this
project, MQTT Broker and Zigbee2MQTT add-ons

are installed to connect Zigbee devices using a USB
coordinator.

Sensors and actuators listed in table I manage
devices like heating systems, air conditioning, pho-
tovoltaic panels, and EV chargers. Millimeter-wave
presence sensors detect small movements for accurate
occupancy detection which is later used to create
patterns for predictions.

TABLE I
LIST OF HARDWARE INSTALLED IN THE SMART HOME

NETWORK.

type protocol amount

controller - 1
HVAC Ethernet/IP 1
inverter/powermeter Ethernet/IP 1
EV charger Ethernet/IP 3
hot-tub hearter Ethernet/IP 1
coordinator Zigbee 1
room thermostat Zigbee 4
boiler thermostat Zigbee 1
boiler relais Zigbee 1
blinds Zigbee 3
presence sensor Zigbee 4

The conventional control prioritizes using surplus
solar energy. A priority list ensures devices activate
sequentially based on available energy and demand.
Automation scripts simplify control by breaking tasks
into sub-programs, executed every 5 minutes. Energy
management balances device activation and deactiva-
tion to optimize consumption.

Implemented control automations:
• Climate Control: Adjusts heating/cooling based

on season, temperature, and occupancy.
• Infrared Heating: Controlled similarly but with

a frost protection function.
• Blinds: Protects against wind and supports heat-

ing/cooling by adjusting based on solar
• production.
• Boiler and Hot-Tub: Maintain temperatures and

use excess energy for heating.
• EV Chargers: Dynamically regulate charging

based on surplus energy, with manual overrides.



The system uses a Lenovo laptop (table II) for
training machine learning models, with data logged
via a Raspberry Pi and the model deployed on an
Nvidia Jetson Nano.

TABLE II
HARDWARE AND SOFTWARE OF THE LAPTOP USED FOR

UNSUPERVISED MACHINE LEARNING

component description

CPU AMD Ryzen R7 4800H
RAM 2x16 GB SO-DIMM DDR4
GPU Nvidia GeForce GTX 1650 Ti Mobile
Disk 2 TB SSD
OS PopOS 22.04 (Linux)

As mentioned earlier, a supervised learning ap-
proach is used to train a Random Forest and an
Artificial Neural Network, requiring the creation of a
dataset. To supplement limited real-world recordings,
a synthetic dataset is generated. This section de-
scribes the process of creating both datasets. Python
3.12.7 is used for data generation, recording, and
model training, with libraries like Pandas and NumPy
handling large data processing.

The synthetic dataset simulates realistic daily rou-
tines based on occupancy sensor data, reflecting the
behavior of a working adult. The generation process
begins with real weather and calendar data from
January 1. 2000 to August 31. 2023 with historical
hourly data sourced from Open-Meteo [13]. Days are
initially categorized as holiday, work, or off using
the holidays library to get a reference for Austrian
holiday dates.

Random vacation days are assigned (e.g., one-
or two-week vacations), ensuring vacations are dis-
tributed throughout the year. Sick days are generated
with a 0.2 % probability and durations between 3
and 13 days. The resulting dataset includes day types
(vacation and sick).

Next, room-specific daily routines are created
based on day types. For example, on workdays, the
routine includes morning activities in the kitchen
and bathroom before leaving for work, with evening

returns. The output contains five columns represent-
ing room types (bathroom, bedroom, kitchen, liv-
ing room, study). Presence sensor data is generated
minute-by-minute and saved in CSV files.

The datasets are further enriched by integrating
hourly weather data for each minute and generating
photovoltaic energy production data. Solar energy
output is modeled using sunrise/sunset times, cloud
cover, and noise factors. Household energy consump-
tion data is also generated with random baseline
noise.

To train machine learning models, the datasets are
annotated with target temperatures for room heating:
a comfort temperature (20 ° C to 24 ° C), a moderate
temperature (19 ° C when rooms are vacant), and
a low temperature (15 ° C for extended absences).
Additional annotations include energy usage, heating
activity, and time-based splits. The names of the data
columns and an example entry are listed in table III.

Real data is recorded using a Raspberry Pi running
a Python script that accesses smart home sensors
via the Home Assistant API. Data is logged every
5 seconds and saved in daily CSV files. This data
is formatted and annotated to match the synthetic
dataset, covering the period from November 8. 2023
to March 15. 2024.

For training a Random Forest, the scikit-learn
library is used, specifically the RandomForestRegres-
sor. First, the dataset is split into training (80 %) and
validation (20 %) sets. The columns are divided into
continuous input variables and dependent annotated
results. A Random Forest with 100 decision trees and
a minimum depth of 5 nodes is initialized and trained
over 10 cycles, each with 100,000 random samples,
keeping the best result. The lowest validation loss
(0.05944) is achieved in the seventh cycle, using
Mean Squared Error (MSE) as the loss function.

The model’s predictions show a tendency to oscil-
late between extremes, however, the Random Forest
ranks input variables by their influence on the output.
Variables used power and below are excluded from
the Artificial Neural Network (ANN) training due to
their low impact.



For ANN training, the fast.ai framework (built on
PyTorch) is used, specifically the Tabular Learner for
tabular data. The process has two stages: the first
uses the synthetic dataset, and the second retrains
the model with real-world data. Both stages split the
data into training (80 %) and validation (20 %) sets.
A Dataloader prepares the data, with inputs classified
as categorical (e.g., room types) or continuous (e.g.,
temperature). The batch size is set to 8192, limited
by a 4GB GPU memory.

The learning rate is determined using a tool pro-
vided by fast.ai, resulting in rates of 0.001 for the
first stage and 0.0015 for the second. The ANN has
two hidden layers (500 and 250 nodes), and outputs
are constrained between 15 ° C and 25 ° C. The Mean
Squared Error (MSE) is used as the loss function, and
training runs for 40 epochs. The best model is saved
as a .pkl file for further training and application.

The ANN runs on an Nvidia Jetson Nano with
Ubuntu 20.04, connected to the network via WLAN.
A Python script queries sensor data from Home
Assistant every minute, processes it, and inputs it
into the model to predict the desired room temper-
ature. The prediction is compared with the current
temperature to decide if heating should be turned on
or off, communicated back via API calls. The process
repeats cyclically.

III. RESULTS

To validate the conventional control system, it is
put into operation on August 1. 2024, and run under
periodic supervision during a test phase until Septem-
ber 30. 2024. At the same time, data is recorded
and analyzed using the energy data dashboard inte-
grated into Home Assistant. The months of August
and September represent a best-case scenario for
commissioning, as high electricity production from
the photovoltaic system is expected. Indeed, energy
yield is high in these two months. In August, the
system delivers an average of 92,2 kWh per day, with
a peak value of 123,1 kWh. In September, the aver-
age is 65,2 kWh, with a peak of 101,2 kWh, about
one-third less. Additionally, in September, there is

only one day with energy production over 100 kWh
compared to 16 days in August, or roughly half the
month. The average consumption over the entire test
period remains relatively constant, with an average
of 43,9,kWh in August and a slight increase to an
average of 46.4,kWh in September.

The self-sufficiency rate for total electricity during
the test period is 69,4 %. This is mainly constrained
by charging electric vehicles, which, with a peak
power of 11 kW, are by far the largest consumers in
the smart home. Since they are usually not present on
workdays during the periods of highest photovoltaic
electricity generation, a significant amount of elec-
tricity is exported to the grid and later repurchased
in the evening for charging. The boiler and hot tub
alone cannot store enough thermal energy to consume
100,kWh by themselves. The air conditioning and
infrared heating panels provide a baseline load, but
under normal operation, this never exceeds a load
of 5,kW, making them unsuitable for buffering large
overproduction. However, it is observed that devices
like the boiler are almost exclusively active during the
day when photovoltaic electricity is available, thus
shifting nighttime load to daytime hours.

The self-consumption of photovoltaic electricity
during the test period is not particularly high, at
42,4 %, but this is not due to low system efficiency;
rather, it is due to the high overproduction in the
summer months. Comparing August and September
alone, there is already a noticeable increase in the
self-consumption rate from 35.4 % to 49.7 %. It is
expected that this rate will further increase in the
winter months due to the lower solar elevation angle
and the corresponding reduction in solar power, as
well as the performance loss caused by snow cover.
The daily consumption data for the two test months
are listed in Tables IV and V.

Additionally the feasibility of training a Machine
Learning algorithm to recognize behavioral patterns
and thus control room-specific heating is demon-
strated. The approach of first generating a synthetic
dataset to substitute for missing real data also shows
promising results. In this way, it is possible to extend



the dataset within the scope of this work, which is
limited to three months, and thus deliver meaningful
results. However, when comparing the validation loss
of the two training processes, it becomes evident
that the real dataset is situated at the lower limit in
terms of data volume. The loss rate (MSE) increases
significantly from 0.067023 to 2.430232 between the
two training processes. On the other hand, the room
heating control system has an inherently dampening
physical effect, which means that a model with more
fluctuating output but better predictive properties is
preferable to a more stable model.

Fig. 1. Comparison of Predictions (datapoints) with an-
notated data (dashed line) from 28. Dezember 2023 in the
eat-in kitchen.

Fig. 2. Comparison of Predictions (datapoints) with an-
notated data (dashed line) from 28. Dezember 2023 in the
bathroom.

In Figures 1, 2, 3 and 4 an example for perdiction
results compared to annotated training data for each
of the rooms can be observed. There the ANN model
shows promise in predicting future presence of per-
sons. The gradual ramp up and down of the predicted
temperature during a period of high locomotion of
people between minute 800 and 1400 is visible in
figures 1 through 3. For better results more training
and especially more training data is needed which is
currently limited by the limited time frame of this
paper and the capabilities of the utilized hardware.

Fig. 3. Comparison of Predictions (datapoints) with an-
notated data (dashed line) from 28. Dezember 2023 in the
bedroom.

Fig. 4. Comparison of Predictions (datapoints) with an-
notated data (dashed line) from 28. Dezember 2023 in the
study.



IV. CONCLUSION

In this work, a smart home control system is
successfully implemented using the open-source soft-
ware Home Assistant. Communication with the sen-
sors and controlled consumers is carried out via
Ethernet and Zigbee 3.0. A conventional automation
system is set up, which controls all connected con-
sumers according to a priority list, adapting their
usage to the output of the photovoltaic system.
As a result, a solar share of 69,4 % of the to-
tal consumption is consistently achieved during a
two-month test period. Furthermore, the feasibility
of machine-learning-based room heating control is
demonstrated. For this purpose, an artificial neural
network is trained using the fast.ai framework with
both synthetic and real datasets. The goal is to es-
timate the currently desired room temperature based
on behavior patterns determined by presence sensors.

Several approaches exist to further enhance the
machine-learning control system. However, this
would require more powerful hardware to train on
larger datasets. A new solution is also needed for the
operational hardware, as the Nvidia DevKit used has
reached the end of its product lifecycle and no longer
receives official support. Switching to software that
does not require CUDA could also be considered,
enabling access to a broader range of hardware
options.

To generally increase the share of photovoltaics
in total electricity consumption, acquiring a battery
storage system is deemed beneficial, as it allows
energy buffering from day to night or even over
several days. This would address the issue where
the largest consumers in the system—electric vehi-
cles—are usually not present at the time of peak
electricity production.

Finally, the creation of an additional dataset for a
new artificial neural network is theorized, which aims
to replace the entire conventional control system.
Unlike the previous dataset, this one would not
be annotated using manual rules. Instead, a genetic
algorithm would first determine the optimal combi-
nation of active consumers for discrete photovoltaic

generation values ranging from 0 kW to 22 kW in
0,5 kW increments. These computed optima could
then be used to annotate the new dataset and provide
a basis for an improved algorithm.

TABLE III
COLUMNS OF THE SYNTHETIC DATASET WITH AN

EXAMPLE ENTRY.

column example value

month 01
day 01
time 18
bathroom 0
bedroom 1
kitchen 0
living room 0
study 0
weather temperature -5.0
weather cloudcover 100.0
weather windspeed 4.7
weather is day 0.0
solar power 0.0
used power 8384.0
last at living room 19.0
last at kitchen 101.0
last at bathroom 56.0
last at bedroom 0.0
last at study 205.0
last at home 0.0
active living room 1.0
heating living room 19.0
temperature living room 15.1
set temperature living room 23.0
active kitchen 1.0
heating kitchen 19.0
temperature kitchen 15.8
set temperature kitchen 21.0
active bathroom 1.0
heating bathroom 19.0
temperature bathroom 9.3
set temperature bathroom 24.0
active bedroom 1.0
heating bedroom 21.0
temperature bedroom 18.9
set temperature bedroom 21.0
active study 1.0
heating study 19.0
temperature study 17.0
set temperature study 20.0



TABLE IV
DAILY ENERGY USAGE STATISTIK FOR THE MONTH OF

AUGUST 2024: FROM LEFT TO RIGHT: ENERGY
PRODUCED BY PHOTOVOLTAIKS, ENERGY USED, ENERGY

EXCHANGED WITH THE GRID, SELF-CONSUMED
PERCENTAGE OF PHOTOVOLTAIKS ENERGY AND

SELF-SUFFICIENCY PERCENTAGE.

PV used grid self-con. self-suff.
/ kWh / kWh / kWh / % / %

81,3 37,2 44,1 35 76
67,8 25,7 42,1 33 86
69,7 49,4 20,3 52 74
92,5 41,7 50,8 33 74
90,3 36,8 53,6 31 76

123,1 24,4 98,6 17 84
81,8 46,5 35,3 45 80
68,6 39,6 28,9 25 43

111,2 86,5 24,6 64 82
119,1 20,2 98,9 15 89
117,7 11,5 106,1 8 82

88,6 7 81,5 5 64
101,8 36,8 65 28 78
102,7 7,3 95,3 5 66

108 15,4 92,6 6 43
99,1 111 -11,9 81 72
95,9 49,1 46,8 40 79

32 27,4 4,6 57 67
43,9 32,4 11,6 48 65

107,2 54,2 53 38 75
111,2 61,8 49,4 26 47
106,2 51,8 54,5 14 29
109,1 47,9 61,1 39 90
101,3 46,9 54,4 36 78

39,6 33,2 6,4 44 52
66,5 45,1 21,4 42 63

114,9 117,5 -2,7 66 65
106,6 28,7 77,9 18 67
106,1 85,4 20,7 72 90
100,6 56,4 44,2 50 89

92,5 27,5 65 24 80

TABLE V
DAILY ENERGY USAGE STATISTIK FOR THE MONTH OF

SEPTEMBER 2024: FROM LEFT TO RIGHT: ENERGY
PRODUCED BY PHOTOVOLTAIKS, ENERGY USED, ENERGY

EXCHANGED WITH THE GRID, SELF-CONSUMED
PERCENTAGE OF PHOTOVOLTAIKS ENERGY AND

SELF-SUFFICIENCY PERCENTAGE.

PV used grid self-con. self-suff.
/ kWh / kWh / kWh / % / %

52,1 65,8 -13,8 89 71
101 40,5 60,5 33 81
95,1 53 42,1 47 84
85,7 31,3 54,4 29 80
54,6 23 31,6 30 72
73,3 30,2 43,1 32 78

101,2 40,1 61,1 35 89
43,9 35,5 8,4 52 65
37,9 31,2 6,7 55 67

64 53 11 42 50
72,8 51,6 21,2 31 43
19,4 43,4 -24 67 30

17 37,7 -20,7 48 22
36,4 27,6 8,8 54 71
86,4 88,2 -1,8 81 80
22,4 23,2 -0,8 59 57
97,3 50,2 47,1 44 86
90,8 27,9 62,9 25 81
72,3 23 49,3 28 88
69,3 91 -21,7 84 64
84,2 60,8 23,4 46 63

78 74,8 3,2 78 81
78,4 41 37,4 46 88
73,3 33,3 39,9 39 86
72,4 41,5 30,9 47 81
34,2 39,8 -5,6 46 40
28,7 31,1 -2,4 57 53
55,3 41,9 13,3 45 60
94,2 97,4 -3,2 77 75
63,9 62,6 1,4 46 47
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